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Multiobjective Topology Optimization
of a Beam Under Torsion and Distortion

Tae Soo Kim¤ and Yoon Young Kim†

Seoul National University, Seoul 151-742, Republic of Korea

The objective is to present multiobjective topology optimization for the design of a thin-walled beam section.
Unlike existing reports on beam-section optimization, the present study takes into account a distortional rigidity in
addition to a torsional rigidity. To alleviate the con� ict in maximizationof the torsional and distortional rigidities,
the use of a multiobjective function in product form is suggested. We also propose to use the eigenvalue of the
in-plane stiffness matrix of a general beam section in representing the distortional rigidity.

I. Introduction

B EAM-SECTION optimization has been one of the interesting
topics in the � eld of structural optimization. Because beams

under bending or torsional loads are common, most work on the
beam-sectionoptimizationhas been concernedwith bendingor tor-
sional rigidity maximization. To achieve this goal, earlier attempt
was made by analytic methods.1;2 As numerical methods, such as
� nite elements and boundary elements, become powerful tools for
structural optimization, the design problems of more general cross
sections have been worked out.3;4 However, they have investigated
the design of simply connected cross sections only; complex and
practical cross sections have not been considered.

To overcome the limitation just mentioned, Kim and Kim5 have
recently proposed a new approach based on topology optimization.
This work demonstrates that a thin-walled section can be obtained
as an optimal solution when the mass constraint of the topology
optimization problem becomes tight. It is also pointed out that the
torsionalrigidity alonecan be used as a design objectivebecausethe
torsional rigidity is always smaller than the mean bending rigidity.
In the case of thin-walled beams under general loading, however,
cross sections might be distorted signi� cantly near loaded ends.6;7

To prevent such distortional deformations, the distortional rigidity
of a beam section needs to be consideredin addition to the torsional
rigidity.

In the present work beam-section topology optimization is for-
mulated to � nd an optimal thin-walled section having appropriate
torsional and distortional rigidities. The torsional rigidity of a gen-
eral cross section can be derived from the well-known Saint Venant
torsion problem.8 The distortional rigidity of a general cross sec-
tion has not been de� ned so far, although an explicit de� nition for
the case of thin-walled sections can be found in Ref. 7. Extend-
ing the notion of the distortional stiffness in Ref. 7, we represent
the distortional rigidity of general cross sections by the fundamen-
tal eigenvalue of the in-plane stiffness matrix of the cross section.
The major dif� culty in the present multiobjective problem is that
maximizing the torsional rigidity alone yields a thin-walled hollow
section, whereas maximizing the distortional rigidity alone yields
a lumped mass concentrated at the center of a cross section. To
compromise the con� icting nature of the rigidities,a multiobjective
function in product form is proposed. The advantage of the present
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multiobjective function is that it has balanced sensitivities between
objectives.Numericalexamplesshow that thepresentmultiobjective
function has superior convergenceperformance to typical multiob-
jective functions in the form of weighted sums.

II. Formulation of Beam-Section
Topology Optimization

Topology optimization, proposed by BendsÀe and Kikuchi,9 is a
framework in which the optimal material distribution of an elastic
body satisfying given design requirements is sought. Finding the
optimal on-off distirbution of a material is originally an ill-posed
problem. The basic idea of the homogenization approach to topol-
ogy optimization lies in the relaxation of this ill-posed problem
using a microstructure. To evaluate the macroscopic property of
the microstructure, a homogenization method is employed. How-
ever, the present work employes a power law approach,10;11 which
has been proven physically realizable for certain powers.12 Before
considering multiobjective topology optimization, we consider the
topology optimization formulation either for the maximization of
the torsional rigidity or for the distortional rigidity.

A. Torsional Rigidity Maximization
Following the procedure in Ref. 5, the beam-sectiontopologyop-

timization problem to maximize the torsional rigidity can be stated
as follows:

Minimize

f .½/ D ¡Dt .½/ (1a)

such that

h.½/ D
NeX

e D 1

Z

Ae

½e dA ¡ M0 D 0 (1b)

½l · ½e · ½u (1c)

where

½ D f½egT ; e D 1; 2; : : : ; Ne (1d)

The allowed beam section mass is speci� ed by M0 , and the total
number of � nite elments used to discretize the cross section is de-
notedby Ne. The designvariable½e is the material density of the eth
� nite element. The lower (½l ) and upper (½u ) bounds on the design
variables are taken as ½l D 0:01 and ½u D 1:0 in the present work.

The torsional rigidity Dt .½/ in Eq. (1a) can be constructed from
the discretized form of the original de� nition in Eq. (2):

Dt D 2

Z

A

Á.x; y/ dA (2)
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where the Prandtl stress function Á.x; y/ satis� es the following
equation:
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Equation (3) is the governing equation of the Saint Venant tor-
sion problem, where x and y denote the Cartesian coordinates, and
G.x; y/ is the shear modulus. The detailed derivation of Eqs. (2)
and (3) can be found in Ref. 8.

A discretized form of Eq. (2) can be put into

Dt .½/ D U T ÁK U (4)

where ÁK is the stiffness matrix of Eq. (3) and U denotes the nodal
value array of the stress functionÁ.x; y/. In the topologyoptimiza-
tion setting the design variable ½e controls the stiffness matrix as

ÁK D
NeX

e D 1

Z

Ae

ÁBT
e

ÁD.½e/
ÁBe dA (5)

where

ÁD.½e/ D 1
G.½e/

³
1 0

0 1

´
; G.½e/ D G0

³
½e

½u

´n

(6)

The symbol ÁBe in Eq. (5) is the interpolationmatrix for the deriva-
tives of U in an element level.The shear modulus of a beam is given
by G0 , and n is the material penalization parameter. In the present
work the values of G0 D 1:0 £ 106 and n D 2 will be used.

B. Distortional Rigidity Maximization
Distortion is an in-plane deformation of a beam section, and it

is usually coupled with in-plane rigid-body rotation. Although dis-
tortional deformation is insigni� cant in solid sections, it cannot be
neglected in thin-walled sections. Figure 1 shows the typical in-
plane deformation of a thin-walled beam section subjected to a
couple. The cross sections near the loaded tip go through signif-
icant deformation, which can be decomposed into in-plane distor-
tional deformation and rigid-body rotation associated with torsion.
Conventionalbeam theoriespredict rigid-bogysectionrotationsand
shear stresses.However,distortionalbendingstressesalong the con-
tour of the beam cross section are also developed, which become
more signi� cant when beam walled are very thin. The importance
and mechanics of the distortion in thin-walled beams are explained
in Refs. 6 and 7, and the signi� cant effects near jointsof thin-walled
beams are also discussed in Refs. 13 and 14.

Fig. 1 Deformation of a thin-walled box beam under a couple.

Althoughthedistortionalstiffnessin a thin-walledbeamis explic-
itly given in Ref. 7, it has not been de� ned for general solid beams.
Extending the notion of the distortional stiffness in Ref. 7, we pro-
pose to measure the distortional rigidity by means of the eigenvalue
3.½/ of the following plane-strain problem:

Â KU D 3.½/U (7)

Â K D
NeX

e D 1

Z

Ae

Â BT
e

Â D.½e/
Â Be dA (8)
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(9)

In Eq. (7) Â K is the stiffness matrix of the plane-strain problem de-
� ned in the regionoccupiedby a beamsection,and U is the displace-
ment vector. The element strain interpolation matrix is denoted by
Â Be , and Young’s modulus of the beam is given by E0 D 2:6 £ 106.
To maximize the distortional rigidity of a beam section, the funda-
mental eigenvalue3.½/ of Eq. (7) will be maximized. This problem
can be formulated in a topology optimization setting by replacing
Eq. (1a) by

f .½/ D ¡3.½/ (10)

The rest of Eq. (1) remains unchanged.
One of the serious problems in eigenvalue-related optimization

problems is mode switching that usually causes discontinuityin the
optimization process.15 Because the distortional rigidity is de� ned
by an eigenvalue, the distortional mode must be tracked during the
optimization process to prevent the discontinuity. In this work we
utilize the Mac-based mode trackingmethod16 to overcome the dis-
continuity problem.

C. Sensitivity Analysis
The sensitivities of each function in Eqs. (1) and (10) with re-

spect to the design variable ½e are the key information in updating
the design variables. The procedure for the sensitivity analysis in
structural optimization problems can be found in Ref. 17. Here, we
summarize the results, brie� y.

One canshow that the sensitivitiesof the torsionalanddistortional
rigidities in Eqs. (1a) and (10) can be written as

@ Dt .½/

@½e
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@½e
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n

½e
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The sensitivity of the mass constraint in Eq. (1b) is simply

@h.½/

@½e

D
Z

Ae

dA (13)

III. Construction of a Multiobjective Function
It is important to realize the con� icting nature between the tor-

sional rigidity optimization and distortional rigidity optimization.
One can show that the solution of the topology optimization prob-
lem stated by Eq. (1) is a hollow thin-walled closed section when
the mass constraint becomes tight. On the other hand, a tight mass
constraint for the distortional rigidity optimization problem, stated
by Eq. (10), yields a lumped mass concentrated at the center of a
beam cross section.

To � nd an optimalbeamsection that maximizes both the torsional
and distortional rigidities, one can construct a weighted sum of the
rigidities as an objective function:

fs D ¡.wD Dt C w33/ (14)
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where wD and w3 are weighting factors. However, the use of such
an objective function can result in solution divergence because the
con� ict in maximizing the rigidities is severe. To resolve this prob-
lem, we propose to use a multiobjective function in the following
product form:

f p D ¡
¡
DwD

t 3w3

¢
(15)

The effects of the functional form of the objective functions can
manifest themselves in the following sensitivity expressions:

@ fs

@½e
D ¡

³
wD

@ Dt

@½e
C w3

@3

@½e

´
(16)

@ f p

@½e

D ¡
³
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Dt

C w3

@3=@½e

3

´
(17)

Although the sensitivity @ f p=@½e is proportional to the normalized
sensitivities of Dt and 3, the sensitivity @ fs =@½e is proportional to
the unnormalizedsensitivitiesof Dt and 3. Because of the normal-
ization factors Dt and 3 appearing in the denominatorsof Eq. (17),
the objective function f p becomes less sensitive to the variationsof
Dt and 3 as Dt and 3 become larger, and vice versa. Furthermore,
the normalization factors Dt and 3 serve to balance the effects of
Dt and 3 on the sensitivity of the objective function f p . More dis-
cussions on multiobjective formulation for topology optimization
can be found in Refs. 18 and 19.

Instead of using multiobjective functions, one can optimize only
one objectivewhile all othersare consideredas constraint.However,
it appears dif� cult to preselect the bounds of all constraints for the
present problem.

IV. Updating Design Variables
An optimality criterion (OC) algorithm has generally been used

in topologyoptimizationproblemsbecausetheOC algorithmis very
effective in dealingwith problems with very many design variables.
The optimality criterion is very simple and intuitive compared to
mathematical programming. In the present work the topology opti-
mizationproblemis de� nedbyEqs. (1b), (1c), and (15). We set upan
updating rule using the Kuhn–Tucker conditionfor these equations,
although the same result can be obtained rigorously.20

The Lagrangian function of the present optimization problem is
stated as

L.½; ¹/ D f .½/ C ¹h.½/ (18)

For the stationaryconditionat the optimal point, the derivativeswith
repect to all variables must be zero:

@ L

@½e
D @ f

@½e
C ¹

@h

@½e
D 0 (19)

@L

@¹
D h D 0 (20)

By introducing the index such that
Y

e

D ¡ 1

¹

@ f=@½e

@h=@½e

(21)

Equation (19) can be written as
Q

e
D 1. The updating rule in the

OC algorithm is written as

½k C 1
e D

Ý

e

½k
e (22)

such that

h
¡
½k C 1

e

¢
D 0 (23)

where ´ is a damping factor to control the convergencespeed and k
is the index representing the iteration number. In the updating rule
in Eqs. (22) and (23), a proper move limit and the side constraints
in Eq. (1c) must be considered.For more details see Refs. 9 and 17.

In topologyoptimizationthe checkerboardproblem is a common
dif� culty caused from the instability of numerical analysis.10;11;21

Among various schemes to prevent the checkerboard pattern, we
employ the method of averaging adjacent element densities or
sensitivities.21

V. Numerical Examples
A. Example 1: Square Design Domain

A square design domain for a beam section and its fundamental
distortionaldeformationmode are depicted in Fig. 2. The objective
function f p of Eq. (15) is considered � rst, where the weighting

Fig. 2 Example 1: square design domain and its fundamental distor-
tional mode.

Fig. 3 Optimized result for ex-
ample 1 ( fp: wD = 1:0, wK =
0:01).

a) Rigidities

b) Objective function

Fig. 4 Iteration history for example 1 ( fp: wD = 1:0, wK = 0:01).
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Table 1 Numerical values of the torsional and distortional rigidities at the initial and � nal design iterations

Torsional rigidity Distortional rigidity Objective function

Example Initial Final Initial Final Initial Final

1, f p : wD D 1:0, w3 D 0:01 1.404eC9 6.731eC9 61.40 134.4 ¡21.10 ¡22.679
1, fs : wD D 0:05, w3 D 1:0 1.404eC9 0.8997eC9 61.40 544.8 ¡7.020eC7 ¡4.499eC7

(not optimized)
1, fs : wD D 0:075, w3 D 1:0 1.404eC9 8.593eC9 61.40 6.868 ¡1.053eC8 ¡6.445eC8
2, f p : wD D 1:0, w3 D 0:005 0.7809eC9 4.665eC9 11.82 45.90 ¡20.49 ¡22.28
3, f p : wD D 1:0, w3 D 0:0 0.6250eC9 1.931eC9 24.35 22.68 ¡20.25 ¡21.38
3, f p : wD D 1:0, w3 D 0:01 0.6250eC9 1.860eC9 24.35 89.89 ¡20.29 ¡21.39
3, f p : wD D 1:0, w3 D 0:05 0.6250eC9 1.647eC9 24.35 101.5 ¡20.41 ¡21.45

Fig. 5 Results for example 1 ( fs: wD = 0:05, w K = 1:0).

Fig. 6 Results for example 1 ( fs: wD = 0:075, wK = 1:0).

factors are taken as wD D 1:0 and w3 D 0:01. As mentioned in the
preceding section, the distortional mode in Fig. 2 is tracked during
the optimizationprocess to avoid the discontinuityin the sensitivity
calculations.16 Figure 3 shows the optimized results with a 25%
mass constraint. The initial design starts with a uniform density
distribution of ½e D 0:25.

As shown in Fig. 3, a hollow diagonally stiffened thin-walled
section is obtained.The stiffenedsectionobtainedin Fig. 3 is indeed
a typical section employed to suppress distortional deformation.22

In practical applications the stiffening is accomplished by spacing
appropriately the transverse ribs indicated in Fig. 3.

The historiesof the rigiditiesand theobjectivefunctionareplotted
in Fig. 4. In Fig. 4a the con� icting nature of the rigidities is clearly
shown, particularlyat the initial design stage. The numerical values
of the torsionalanddistortionalrigiditiesfor all examplesconsidered
in this work are summarized in Table 1.

To investigate the advantage of the objective function f p in
Eq. (15) over fs in Eq. (14), we also consider a beam-section de-

sign problem with the objective function fs . Figures 5 and 6 show
the results with different weighting factors. Because the weighting
factor for the distortional rigidity is larger than that for the tor-
sional rigidity, only the distortional rigidity is increased while the
torsional rigidity experiencesmany oscillations as shown in Fig. 5.
Moreover, the optimized shape of the cross section in Fig. 5 has no
physical meaning. A slight increase in the weighting factor for the
torsional rigidity results in a hollow section without any reinforce-
ment as shown in Fig. 6. The value of the distortional rigidity is
even reduced when it is compared with the initial value.

The weighting factors wD and w3 have been determined by nu-
merical experiments, and their effects on results are illustrated in
Fig. 7. The performance of the objective function f p is superior to
that of the typical objective function fs . As shown in Fig. 7b, the use
of fs does not yield any useful section that resists effectivelytorsion
and distortion. However, the use of the present objective function
f p can yield a section well known to resist distortion. Though no
rigorousapproach to select the weighting factors for f p is provided,
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a) Using fp : wD = 1:0 with varying w K

b) Using fs : wK = 1:0 with varying wD

Fig. 7 Optimized results with varying weighting factors.

Fig. 8 L-shaped design domainand its fundamentaldistortionalmode.

Fig. 9 Optimized result for example 2 ( fp: wD = 1:0, wK = 0:005).

the presentmultiobjectivefunction f p is shown to yield satisfactory
results.

B. Example 2: L-Shaped Design Domain
An L-shaped design domain and its distortional deformation

mode are depicted in Fig. 8. The values of initial design variables½e

are uniformwith ½e D 0:25, and a 25% mass constraint is used.The
optimal beam-section con� guration obtained with f p in Eq. (15)
is shown in Fig. 9. In beam sections having concave shapes like an
L-shapedsection,one can appreciatethe importanceof the inclusion
of the distortional rigidity in the objective funcntion.

C. Example 3: Reinforcement of a Trapezoidal Thin-Walled Section
As the � nal example, we consider a reinforcing problem of a

trapezoidal thin-walled beam section in which both the torsional
and distortional rigidities are to be increased. By using differ-
ent sets of weighting factors, reinforcements are expected to have
different shape and topology. The design domain and its funda-
mental distortional deformation pattern are depicted in Fig. 10.
The trapezoidal thin-walled beam is a practical structural mem-
ber used in many engineering applications. The optimized re-
sults shown in Fig. 11 are obtained with (wD D 1:0, w3 D 0:0),
(wD D 1:0, w3 D 0:01), and (wD D 1:0, w3 D 0:05), respectively.
Here, the values of the initial design variables ½e are uniform
with ½e D 0:15, and a 15% mass constraint is used. The use
of higher values of w3 in this trapezoidal section tends to in-

Fig. 10 Trapezoidal design domain and its fundamental distortional
mode.

a) Using fp with wD = 1:0, w K = 0:0 (torsional rigidity only)

b) Using fp with wD = 1:0, wK = 0:01

c) Using fp with wD = 1:0, wK = 0:05

Fig. 11 Optimized result for example 3.

crease the number of stiffening ribs, which stiffen its distortional
rigidity.

VI. Conclusions
Thin-walled beam-section design to maximize the torsional and

distortional rigidities was carried out in the frame of multiobjec-
tive topology optimization. The present multiobjective function in
product form was shown to handle effectivelymultiobjectivedesign
problemsin which the natureof objectivesinvolvedis seriouslycon-
� icting. The role of the distortional rigidity was revealed through
several examples. The fundamental eigenvalueof the in-plane stiff-
ness matrix for a section served well to de� ne the distortional
rigidity.
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