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Multiobjective Topology Optimization
of a Beam Under Torsion and Distortion

Tae Soo Kim* and Yoon Young Kim'
Seoul National University, Seoul 151-742, Republic of Korea

The objective is to present multiobjective topology optimization for the design of a thin-walled beam section.
Unlike existing reports on beam-section optimization, the present study takes into account a distortional rigidity in
addition to a torsional rigidity. To alleviate the conflict in maximization of the torsional and distortional rigidities,
the use of a multiobjective function in product form is suggested. We also propose to use the eigenvalue of the
in-plane stiffness matrix of a general beam section in representing the distortional rigidity.

I. Introduction

EAM-SECTION optimization has been one of the interesting

topics in the field of structural optimization. Because beams
under bending or torsional loads are common, most work on the
beam-sectionoptimizationhas been concerned with bending or tor-
sional rigidity maximization. To achieve this goal, earlier attempt
was made by analytic methods.'> As numerical methods, such as
finite elements and boundary elements, become powerful tools for
structural optimization, the design problems of more general cross
sections have been worked out.>* However, they have investigated
the design of simply connected cross sections only; complex and
practical cross sections have not been considered.

To overcome the limitation just mentioned, Kim and Kim® have
recently proposed a new approach based on topology optimization.
This work demonstrates that a thin-walled section can be obtained
as an optimal solution when the mass constraint of the topology
optimization problem becomes tight. It is also pointed out that the
torsionalrigidity alone can be used as a design objectivebecause the
torsional rigidity is always smaller than the mean bending rigidity.
In the case of thin-walled beams under general loading, however,
cross sections might be distorted significantly near loaded ends.>’
To prevent such distortional deformations, the distortional rigidity
of a beam section needs to be consideredin addition to the torsional
rigidity.

In the present work beam-section topology optimization is for-
mulated to find an optimal thin-walled section having appropriate
torsional and distortional rigidities. The torsional rigidity of a gen-
eral cross section can be derived from the well-known Saint Venant
torsion problem® The distortional rigidity of a general cross sec-
tion has not been defined so far, although an explicit definition for
the case of thin-walled sections can be found in Ref. 7. Extend-
ing the notion of the distortional stiffness in Ref. 7, we represent
the distortional rigidity of general cross sections by the fundamen-
tal eigenvalue of the in-plane stiffness matrix of the cross section.
The major difficulty in the present multiobjective problem is that
maximizing the torsional rigidity alone yields a thin-walled hollow
section, whereas maximizing the distortional rigidity alone yields
a lumped mass concentrated at the center of a cross section. To
compromise the conflicting nature of the rigidities, a multiobjective
function in product form is proposed. The advantage of the present
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multiobjective functionis that it has balanced sensitivities between
objectives.Numerical examplesshow that the presentmultiobjective
function has superior convergence performance to typical multiob-
jective functions in the form of weighted sums.

II. Formulation of Beam-Section
Topology Optimization

Topology optimization, proposed by Bendsoe and Kikuchi,’ is a
framework in which the optimal material distribution of an elastic
body satisfying given design requirements is sought. Finding the
optimal on-off distirbution of a material is originally an ill-posed
problem. The basic idea of the homogenization approach to topol-
ogy optimization lies in the relaxation of this ill-posed problem
using a microstructure. To evaluate the macroscopic property of
the microstructure, a homogenization method is employed. How-
ever, the present work employes a power law approach,!®!! which
has been proven physically realizable for certain powers.!> Before
considering multiobjective topology optimization, we consider the
topology optimization formulation either for the maximization of
the torsional rigidity or for the distortional rigidity.

A. Torsional Rigidity Maximization

Following the procedurein Ref. 5, the beam-sectiontopology op-
timization problem to maximize the torsional rigidity can be stated
as follows:

Minimize
f(p) =—D(p) (1a)
such that
Ne
h(p)=2/ pedA —My=0 (1b)
e=1 e
P = Pe = Py (1c)
where
p={po}". e=1,2,...,N, (1d)

The allowed beam section mass is specified by M, and the total
number of finite elments used to discretize the cross section is de-
notedby N,. The design variable p, is the material density of the eth
finite element. The lower (p;) and upper (p, ) bounds on the design
variables are taken as p;, =0.01 and p, = 1.0 in the present work.

The torsional rigidity D, (p) in Eq. (1a) can be constructed from
the discretized form of the original definition in Eq. (2):

D, =2/¢(x,y)dA )
A
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where the Prandtl stress function ¢ (x, y) satisfies the following
equation:

1[;M} ) 1[;M} e
ox| G(x,y) ox ay| G(x,y) ay
Equation (3) is the governing equation of the Saint Venant tor-
sion problem, where x and y denote the Cartesian coordinates, and
G(x,y) is the shear modulus. The detailed derivation of Egs. (2)
and (3) can be found in Ref. 8.

A discretized form of Eq. (2) can be put into

D,(p) = ®"’K® “)

where ?K is the stiffness matrix of Eq. (3) and @ denotes the nodal
value array of the stress function¢ (x, y). In the topology optimiza-
tion setting the design variable p, controls the stiffness matrix as

Ne
K= / *B[*D(p.)’B. dA 5)

e=1

where

D(p) = —— (1 "
DTG0 o 1)

The symbol ? B, in Eq. (5) is the interpolation matrix for the deriva-
tives of @ in an element level. The shear modulus of a beamis given
by Gy, and n is the material penalization parameter. In the present
work the values of G, = 1.0 x 10° and n =2 will be used.

G(p,) = G("—) ©)
0

u

B. Distortional Rigidity Maximization

Distortion is an in-plane deformation of a beam section, and it
is usually coupled with in-plane rigid-body rotation. Although dis-
tortional deformation is insignificant in solid sections, it cannot be
neglected in thin-walled sections. Figure 1 shows the typical in-
plane deformation of a thin-walled beam section subjected to a
couple. The cross sections near the loaded tip go through signif-
icant deformation, which can be decomposed into in-plane distor-
tional deformation and rigid-body rotation associated with torsion.
Conventionalbeam theories predictrigid-bogysectionrotations and
shear stresses. However, distortionalbending stresses along the con-
tour of the beam cross section are also developed, which become
more significant when beam walled are very thin. The importance
and mechanics of the distortionin thin-walled beams are explained
in Refs. 6 and 7, and the significant effects near joints of thin-walled
beams are also discussed in Refs. 13 and 14.

==
Rigid body rotation
associated with
torsion

Couple force Distortional

deformation

Fig.1 Deformation of a thin-walled box beam under a couple.

Althoughthedistortionalstiffnessin a thin-walledbeamis explic-
itly givenin Ref. 7, it has not been defined for general solid beams.
Extending the notion of the distortional stiffness in Ref. 7, we pro-
pose to measure the distortional rigidity by means of the eigenvalue
A (p) of the following plane-strain problem:

*KU = A(p)U 7
Ne
XK:Z/ *B"D(p,)* B, dA (8)
e=1" Ac
E(o) 1 v 0
pe
ID(p,) = il 1 0
MR ; 0 (1—20)/2
E(p,) = Eo(p—> ©)
Pu

In Eq. (7) *K is the stiffness matrix of the plane-strain problem de-
fined in the region occupiedby abeam section, and U is the displace-
ment vector. The element strain interpolation matrix is denoted by
*B,, and Young’s modulus of the beam is given by E, = 2.6 x 10°.
To maximize the distortional rigidity of a beam section, the funda-
mental eigenvalue A (p) of Eq. (7) will be maximized. This problem
can be formulated in a topology optimization setting by replacing
Eq. (1a) by

fp) =—A(p) (10

The rest of Eq. (1) remains unchanged.

One of the serious problems in eigenvalue-related optimization
problemsis mode switching that usually causes discontinuityin the
optimization process.”® Because the distortional rigidity is defined
by an eigenvalue, the distortional mode must be tracked during the
optimization process to prevent the discontinuity. In this work we
utilize the Mac-based mode tracking method!® to overcome the dis-
continuity problem.

C. Sensitivity Analysis

The sensitivities of each function in Egs. (1) and (10) with re-
spect to the design variable p, are the key information in updating
the design variables. The procedure for the sensitivity analysis in
structural optimization problems can be found in Ref. 17. Here, we
summarize the results, briefly.

One can show that the sensitivitiesof the torsionaland distortional
rigidities in Egs. (1a) and (10) can be written as

aD K,
M — _‘I’Z_‘I’e — l@:"’KL,(I)L, (11D
9P, 9P, Pe
A 9K,
APy ey 2y, (12)
9. 9P, Pe

The sensitivity of the mass constraintin Eq. (1b) is simply

dhip) =/ dA (13)
9P, A

III. Construction of a Multiobjective Function

It is important to realize the conflicting nature between the tor-
sional rigidity optimization and distortional rigidity optimization.
One can show that the solution of the topology optimization prob-
lem stated by Eq. (1) is a hollow thin-walled closed section when
the mass constraint becomes tight. On the other hand, a tight mass
constraint for the distortional rigidity optimization problem, stated
by Eq. (10), yields a lumped mass concentrated at the center of a
beam cross section.

To find an optimal beam section that maximizes both the torsional
and distortional rigidities, one can construct a weighted sum of the
rigidities as an objective function:

fo =—wpD; +wxA) (14)
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where wp and w, are weighting factors. However, the use of such
an objective function can result in solution divergence because the
conflict in maximizing the rigidities is severe. To resolve this prob-
lem, we propose to use a multiobjective function in the following
product form:

o= —ta(D7 ") as)

The effects of the functional form of the objective functions can
manifest themselves in the following sensitivity expressions:

afs aD, dA

s _ o, 22 = 16

9p. (wD op 8pg> (16)
of, aD,/dp, dA/3p,
9r _ _ 17
90, (wD D, + wy A (17

Although the sensitivity df,/dp, is proportional to the normalized
sensitivities of D, and A, the sensitivity df; /dp, is proportional to
the unnormalized sensitivitiesof D, and A. Because of the normal-
ization factors D, and A appearing in the denominators of Eq. (17),
the objective function f, becomes less sensitive to the variations of
D, and A as D, and A become larger, and vice versa. Furthermore,
the normalization factors D, and A serve to balance the effects of
D, and A on the sensitivity of the objective function f,,. More dis-
cussions on multiobjective formulation for topology optimization
can be found in Refs. 18 and 19.

Instead of using multiobjective functions, one can optimize only
one objectivewhile all others are consideredas constraint. However,
it appears difficult to preselect the bounds of all constraints for the
present problem.

IV. Updating Design Variables

An optimality criterion (OC) algorithm has generally been used
intopologyoptimizationproblemsbecause the OC algorithmis very
effectivein dealing with problems with very many design variables.
The optimality criterion is very simple and intuitive compared to
mathematical programming. In the present work the topology opti-
mization problemis defined by Egs. (1b), (1c), and (15). We setup an
updating rule using the Kuhn-Tucker condition for these equations,
although the same result can be obtained rigorously2°

The Lagrangian function of the present optimization problem is
stated as

L(p, ) = f(p) + uh(p) (18)

For the stationary conditionat the optimal point, the derivatives with
repect to all variables must be zero:

oL _ of ok

—= +pu— =0 19
0. 0P M8pg (19
aL
— =h=0 (20)
o

By introducing the index such that
1 9f/dp.
l—[ __Laf/op @n
. woh/dp,

Equation (19) can be written as HE =1. The updating rule in the
OC algorithmis written as

P+l = l_[ ok (22)

such that
h(pf*) =0 (23)

where 7 is a damping factor to control the convergence speed and k
is the index representing the iteration number. In the updating rule
in Egs. (22) and (23), a proper move limit and the side constraints
in Eq. (1¢) must be considered. For more details see Refs. 9 and 17.

In topology optimizationthe checkerboard problemis a common
difficulty caused from the instability of numerical analysis.!®!1-2!

Among various schemes to prevent the checkerboard pattern, we
employ the method of averaging adjacent element densities or
sensitivities !

V. Numerical Examples
A. Example 1: Square Design Domain
A square design domain for a beam section and its fundamental
distortional deformation mode are depicted in Fig. 2. The objective
function f, of Eq. (15) is considered first, where the weighting

Design domain
40 X 40 mesh 20

20 i

Fig.2 Example 1: square design domain and its fundamental distor-
tional mode.

Fig.3 Optimized result for ex-
ample 1 (f,: wp=1.0, wy =

0.01).
————— Distortional rigidity
Torsional rigidity
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Fig. 4 TIteration history for example 1 (f,: wp =1.0,w, =0.01).
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Table1 Numerical values of the torsional and distortional rigidities at the initial and final design iterations

Torsional rigidity

Distortional rigidity Objective function

Example Initial Final Initial Final Initial Final
I, fp:wp=1.0,wa=0.01 1.404e+9 6.731e+9 61.40 134.4 —21.10 —22.679
1, fi:wp=0.05,wp=1.0 1.404e+9 0.8997e+9 61.40 544.8 —7.020e+7 —4.499e+7
(not optimized)
1, fyiwp=0.075,wp=1.0 1.404e+9 8.593e+9 61.40 6.868 —1.053e+8 —6.445¢+8
2, fp:wp=1.0,w, =0.005 0.7809e+9 4.665¢+9 11.82 45.90 —20.49 —22.28
3, friwp=10,wy =00 0.6250e+9 1.931e+9 24.35 22.68 —20.25 —21.38
3, fpiwp=10,wy=0.01 0.6250e+9 1.860e+9 24.35 89.89 —20.29 —21.39
3, fp:wp=1.0,wa=0.05 0.6250e+9 1.647e+9 24.35 101.5 —20.41 —21.45
————— Distortional rigidity
Torsional rigidity + 1.4E+00
500 1 \ t
Loy
T
400 o
2 1 I [
B it 2E00 £
T =] Y k=)
w = I ! =
w 300 T I.; ! =
c 1y g
2 S
E 200 .g
R T r 1E+09
a [
100 T
0 25 50 75 100
Iteration number
Fig.5 Results for example 1 (f: wp =0.05, w5 =1.0).
————— Distortional rigidity
Torsional rigidity
801 8E+09
£ 901 6E+00 2
2 =
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S 4E+09 §
S »
3 (o}
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8 20+
2E+09
(h , , . , , ,
0 10 20 30 40 50 60

lteration number

Fig. 6 Results for example 1 (f;: wp =0.075,w, =1.0).

factors are taken as wp = 1.0 and w, = 0.01. As mentioned in the
preceding section, the distortional mode in Fig. 2 is tracked during
the optimization process to avoid the discontinuityin the sensitivity
calculations.!® Figure 3 shows the optimized results with a 25%
mass constraint. The initial design starts with a uniform density
distribution of p, =0.25.

As shown in Fig. 3, a hollow diagonally stiffened thin-walled
sectionis obtained. The stiffened section obtainedin Fig. 3 is indeed
a typical section employed to suppress distortional deformation.??
In practical applications the stiffening is accomplished by spacing
appropriately the transverse ribs indicated in Fig. 3.

The historiesof the rigiditiesand the objective functionare plotted
in Fig. 4. In Fig. 4a the conflicting nature of the rigidities is clearly
shown, particularly at the initial design stage. The numerical values
of the torsionaland distortionalrigiditiesfor all examplesconsidered
in this work are summarized in Table 1.

To investigate the advantage of the objective function f, in
Eq. (15) over f; in Eq. (14), we also consider a beam-section de-

sign problem with the objective function f;. Figures 5 and 6 show
the results with different weighting factors. Because the weighting
factor for the distortional rigidity is larger than that for the tor-
sional rigidity, only the distortional rigidity is increased while the
torsionalrigidity experiences many oscillations as shown in Fig. 5.
Moreover, the optimized shape of the cross section in Fig. 5 has no
physical meaning. A slight increase in the weighting factor for the
torsional rigidity results in a hollow section without any reinforce-
ment as shown in Fig. 6. The value of the distortional rigidity is
even reduced when it is compared with the initial value.

The weighting factors w, and w, have been determined by nu-
merical experiments, and their effects on results are illustrated in
Fig. 7. The performance of the objective function f, is superior to
that of the typical objective function f;. As shown in Fig. 7b, the use
of f; does not yield any useful section that resists effectively torsion
and distortion. However, the use of the present objective function
S, can yield a section well known to resist distortion. Though no
rigorous approach to select the weighting factors for f, is provided,
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X X

001 00125 0015
a) Using f, : wp = 1.0 with varying w5

005 007 00725 0078 0075
b) Using f; : wa =1.0 with varying wp

Fig.7 Optimized results with varying weighting factors.

11
1

22

Design domain
(44 X 44) -
(22 X 22) mesh

22

Fig.8 L-shaped design domainand its fundamental distortionalmode.

Fig.9 Optimized result for example 2 (f,: wp =1.0, w, =0.005).

the present multiobjective function f), is shown to yield satisfactory
results.

B. Example 2: L-Shaped Design Domain

An L-shaped design domain and its distortional deformation
mode are depictedin Fig. 8. The values of initial design variables p,
are uniform with p, = 0.25, and a 25% mass constraintis used. The
optimal beam-section configuration obtained with f, in Eq. (15)
is shown in Fig. 9. In beam sections having concave shapes like an
L-shapedsection,one can appreciatethe importanceof the inclusion
of the distortionalrigidity in the objective funcntion.

C. Example 3: Reinforcement of a Trapezoidal Thin-Walled Section
As the final example, we consider a reinforcing problem of a
trapezoidal thin-walled beam section in which both the torsional
and distortional rigidities are to be increased. By using differ-
ent sets of weighting factors, reinforcements are expected to have
different shape and topology. The design domain and its funda-
mental distortional deformation pattern are depicted in Fig. 10.
The trapezoidal thin-walled beam is a practical structural mem-
ber used in many engineering applications. The optimized re-
sults shown in Fig. 11 are obtained with (wp =1.0, w, =0.0),
(wp =1.0, wy =0.01), and (wp =1.0, wy =0.05), respectively.
Here, the values of the initial design variables p, are uniform
with p,=0.15, and a 15% mass constraint is used. The use
of higher values of w, in this trapezoidal section tends to in-

45

Design domain
(90 X 30) -
(30 X 30) mesh

15

15

Fig. 10 Trapezoidal design domain and its fundamental distortional
mode.

a) Using f, with wp =1.0,w, = 0.0 (torsional rigidity only)

b) Using f, with wp =1.0,w, =0.01

b -

¢) Using f, withwp =1.0,w, =0.05
Fig.11 Optimized result for example 3.

crease the number of stiffening ribs, which stiffen its distortional
rigidity.

VI. Conclusions

Thin-walled beam-section design to maximize the torsional and
distortional rigidities was carried out in the frame of multiobjec-
tive topology optimization. The present multiobjective function in
productform was shown to handle effectively multiobjective design
problemsin which the nature of objectivesinvolvedis seriously con-
flicting. The role of the distortional rigidity was revealed through
several examples. The fundamental eigenvalue of the in-plane stiff-
ness matrix for a section served well to define the distortional
rigidity.
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